他的疯狂,却意外奠定了现代数学的基石

作者:新锦江娱乐   时间:2018-11-07 18:00

监制:中国科学院计算机网络信息中心

说无穷,道无穷

从古希腊始,毕达哥拉斯学派就开启了对整数的研究。整数以及整数之比被认为是穷尽了自然界所有数字的奥秘,直到无理数的发现颠覆了人们对数的观念。此后,人们小心翼翼地处理着和无理数相关的所有知识。然而,不管是有理数还是无理数,都是基于“有限”的数,没有人会试图回答“无限”的问题。

无限多,无限大,那只对应着哲学上的概念,又或者人们仰望浩瀚的星空时对宇宙产生的卑微认识。那是一个自古即被认为是神所专属的领域。每一个尝试理解无穷的人,都会面临着无法逾越的天堑。

数学家高斯(图片来源:百度图片)

两千多年后,人类历史上最伟大的数学家高斯(Gauss)在面临“无限”这一高耸的科学险峰时,曾表达过他对“无穷”的恐惧。高斯说道:我反对把无穷做为一个完全的东西来使用,在数学中绝不允许有这样的用法。无穷只是说话的一种表达方式,其真正的含义只能表示为一个数可以无限制地增大。

康托敏锐地发现了高斯断言中的疑点。他认为高斯所表达的无穷仅仅是一个“潜无穷”,即这样的无穷是一个可以增加到超出任何有限限制的、可变的有限量。康托认为还应该存在一个“实无穷”,即它是一个超出所有有限量的固定的常量。康托的这个观点可谓石破天惊。也正是这个观点,驱使着康托为所有可能的无穷量寻找可以辨认的规则。

数学家戴德金(图片来源:百度图片)

事实上,19世纪下半叶,数学家对分析的严格化运动已经迫切需要对无穷概念的澄清。德国的另一位大数学家戴德金(Dedekind)首先尝试对“无限”的初步解读。他发现,一个无穷系统和有限系统有如下本质区别:无穷系统能和自身的一部分相似,而有限系统却无法做到。